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Abstract

The techniques of Lie group analysis can be used
to determine absolute invariant functions which
serve as classi�er functions in object recogni�
tion problems� Previously� the Lie groups were
found for the conservation equation describing
the energy exchange at the surface of an object
viewed with an infrared camera� The result was
that only trivial absolute invariants exist for the
thermophysical model� Consequently� two new
topics are presented� First� many model approx�
imations are analyzed based on a thermocouple
data set� Second� a formal de�nition is given for
quasi�invariance and selected results are shown
for a particular type a quasi�invariant� called
a dominant�subspace invariant� More extensive
background and results are available in an ex�
tended version of this paper�

� Introduction

Lie group analysis will determine if there exists
a non�trivial function � which assumes a con�
stant value on the set of all roots of an equa�

tion f�z� � 	� The form of the equation re�
mains constant regardless of which particular
object we are measuring �viewing�� but some of
the coe
cients in this equation may �and gen�
erally will� change depending upon the object
being viewed� as for example when f�z� � 	
expresses a conservation equation� As a result�
the set of roots will di�er depending upon the
object being viewed� Correspondingly the con�
stant value ��z� will assume a di�erent value
depending upon the object being viewed� thus
permitting the use of � as a classi�er function�

Quasi�invariants are a generalization of abso�
lute invariants� Non�trivial absolute invariants
are generally rare� Because the restrictions
required for absolute invariance are relaxed�
quasi�invariants are more common� These types
of functions could be just as useful as abso�
lute invariants in practice� A constructive al�
gorithm is developed to �nd a particular type
of quasi�invariant called a Dominant�Subspace
Invariant �DSI�� Experimental results validate
the approach�



In section �� several model approximation are
presented and evaluated� In section � a �g�
ure shows the range of thermophysical proper�
ties found for typical building materials� Sec�
tion � de�nes quasi�invariance and presents an
algorithm for �nding a particular type of quasi�
invariant� Finally� experimental data is used to
con�rm the potential usefulness of these new
functions�

� Approximations to the

Thermophysical Model

Many di�erent model variations have been pro�
posed �Incropera and DeWitt� ����� and used
to simplify the conservation equation�

f � �Ws�s cos � �Wl�lAsky�

� ���T �
s �� ��h�T� � Ts��

� ��k
�Ts

�z
�� �CT

�Ts

�t
� ���

Common approximations to the conservation
equation include linearizing the radiation term
�T �

s �� removing the storage term �thus consider�
ing the conservation of energy for a unit surface
instead of a control volume�� and using �nite
di�erences to approximate the partial deriva�
tives� Finally� Wl may be approximated by T �

�
�

or �more appropriately� by T �
sky� The cost of

each approximation is quanti�ed in order for
the usefulness of the approximations to be more
fully understood�

��� Approximating Wl

The long�wave insolation term is strongly re�
lated to the apparent temperature of the sky�
In the absence of a pyranometer to measure this
component� a common approximation is to esti�
mate Tsky� and use the Stefan�Boltzmann Law
such that

Wl � �W�T �
sky�

A simpler and more common approximation is
to use T�

Wl � �W�T �
�
�

If �W � �� this is an idealized blackbody approx�
imation� Figure � shows that with the correct
selection of �W �idealized graybody�� this is a
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Figure �� Approximating long�wave insolation
�Wl� by an idealized blackbody
��W � �� emitter at temperature
T�� The RMS error is �	 W

m� which
corresponds to a ��� error�
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Figure �� Approximating long�wave insolation
�Wl� by an idealized graybody emit�
ter at temperature T�� The RMS
error is � W

m� for �W � 	��� which
corresponds to a ��� error�



fair approximation� The shape of the approx�
imation is close to that of Wl� However� the
error is large �in absolute terms� because the
mean and variance of the � curves do not match�
Examining the  days of data suggests that the
mean and variance should be approximated for
no more than a �� hour period� Such an ap�
proximation would be more accurate� but only
marginally more complicated than the standard
blackbody approximation�

��� Net Radiosity Approximation

Another common approximation involves both
the long�wave insolation and the convection�
Assuming the atmosphere is a blackbody radi�
ator �as above�� and that the atmosphere com�
pletely surrounds the material� then

Wl�lAsky � ��T �
s �t� � �Wl � ��T �

s �t�

� ���T �
�
� T �

s �t��

Note that this is a blackbody approximation be�
cause �W � �� The � on the right�hand side of
the equation comes from �l � �� not the gray�
body assumption� The fourth order term is fac�
tored to obtain

��T �
�
� T �

s �t��

� ��T� � Ts�t���T
�
�

� T �
s �t���T� � Ts�t��

� hr�T� � Ts�t��

where hr is strongly dependent on the temper�
ature�

It is common to ignore the strong dependence of
hr on the temperature� For a �xed ambient tem�
perature �say T� � ��oC�� and a typical varia�
tion in scene temperature ���	oC to �	oC� the
error due to the linearity assumption is on the
order of �	� �see Figure ��� This approxima�
tion could be dramatically improved if a linear
function of the temperature was used �in place
of a constant�� However� for the current approx�
imation� the error associated with assuming hr
is constant is negligible compared to the error
associated with the blackbody assumption�

This observation also implies that the gray level�
Ls� of the LWIR image is related to the surface
temperature� Ts� of the object�s surface by a
linear relationship�
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Figure �� The net radiosity using the black�
body approximation� The error due
to the blackbody approximation is
unacceptably high� Better approxi�
mation methods are suggested in the
text�
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Figure �� Approximating the net radiosity as
a linear function� For T� � ��oC�
and Ts � ���	oC� �	oC�� the error
due to this approximation is � �	��
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Figure �� The net radiosity using the black�
body approximation and a constant
hr� The error due to assuming hr
is constant is negligible compared
to the error from the blackbody ap�
proximation�

Ls �
�

�
�Ts � ��� ���

where � and � are related to the IR camera
imaging parameters� gain and o�set� This ap�
proximation is used to create algebraic invariant
features that do not require radiometric calibra�
tion�

��� Thermal Storage Approximation

The conservation statement may be written in
terms of a unit surface area instead of a unit vol�
ume� The result of considering the surface heat
�ux is that the thermal storage term is removed
from the original equation� This approximation
is appropriate for materials with a small ther�
mal capacitance �Figure ���

��� Constant Convection Coe�cient

The convection coe
cient� h� is commonly as�
sumed to be constant for short time periods �on
the order of �� hours�� This approximation is
shown to have an error of � � W

m� �
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Figure �� The thermal storage term of con�
crete over �� hours� Materials with
a low thermal capacitance can be
modeled by a heat �ux� For con�
crete �which has an average thermal
capacitance�� the error due to drop�
ping the storage term is on the order
of �� W

m� �
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Figure �� Approximating the convection coef�
�cient as a constant causes an error
on the order of � W

m� in the convec�
tion term of the conservation equa�
tion�
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�t intro�

duces very little error for this data
set� 	�� W

m� ��t � ��� minutes��
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duces errors on the order of �	 W
m� for

�z � ���cm�

��� Approximating the Partial

Derivatives

Temperatures are generally smooth and slow�
changing� In the absence of analytical equa�
tions� derivatives may be approximated by �t�
ting polynomials and calculating the deriva�
tives� or by taking a �nite di�erence� As the
time increment is decreased� these methods con�
verge� Many books discuss approximations of
derivatives� so we will simply show the di�er�
ence in using splines or �nite�di�erences as an
approximation�

Each of these approximations has a useful pur�
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Figure �
� Plotting CT vs� k reveals that
for these � construction type ma�
terials� some information can be
extracted� First� the thermal ca�
pacitance increases with the loga�
rithm of the thermal conductance
�in general�� Second� very few ma�
terials have a thermal capacitance
around 			 kJ

m�K
�

pose� However� the cost with respect to model
accuracy must be understood in order to eval�
uate whether the bene�t is commensurate� To
help form the proper perspective� we have found
that it is not uncommon for radiometric calibra�
tion to introduce errors in the surface temper�
atures on the order of � K which could easily
produce errors in the conservation equation on
the order of �	 W

m� �

� Groupings of Thermophysical

parameters

Classi�ers must handle the problem of di�er�
entiating between known and unknown classes�
Only by �knowing� all the possible classes can
results be guaranteed universally� Practically�
if common materials have similar bulk material
properties� then similar clusters could be used
to gain con�dence that desirable features will
remain useful when used against previously un�
known �but similar� classes� Figure �	 shows a
scatter plot of thermal conductance versus ther�
mal capacitance for � construction type mate�
rials drawn from �Brown and Macro� ����� and
various other heat transfer texts� A thorough
data collection should be representative of the
range and clusters seen in the plot�



Approximation RMS error �error W
m� error

blackbody �	 ��� �	
graybody � ��� �
net radiosity �	 ��� �	
hr constant � �	� �
net radiosity� hr constant �	 ��� �	
heat �ux � � ��
constant convection coe
cient � �� �
Ts��Ts�

�t �� �	�� � 	��
Tz�Ts�
�z  �	� �	

Table �� Summary of the error resulting from common approximations for the thermophysical
model�

� Quasi�Invariants

Non�trivial absolute invariants are generally
rare� Binford �Binford and Levitt� ���� de�
�ned functions that are �almost always� in�
variant or �slowly changing� as quasi�invariant
functions� Because the restrictions required for
absolute invariance are relaxed� quasi�invariants
are more common� These types of functions
could be just as useful as absolute invariants
in practice� The following theoretical concept
of quasi�invariance is a mathematically rigor�
ous generalization of Binford�s �slowly chang�
ing� concept�

A primary goal in applying quasi�invariance the�
ory is to identify the domain in which these fea�
tures are invariant or nearly invariant �corre�
sponding to the notion of �almost always� in�
variant�� These conditions may result from re�
lationships between some of the variables which
are too complex to model� For example� physi�
cal constraints often exist which provide bounds
on the variables� Lie group analysis with in�
equalities is not possible� As a consequence an
empirical approach is necessary�

��� Theoretical Concept

De�nition ����� A function e� � hom�Mf ���
is a �	� 
� quasi�invariant if for each �� � SMf

the function

e� �
�
��x� � � � �

� � 	� e� � ���x�

satis�es the conditions of continuity at 	 with

the pair �	� 
��

j�� 	j � 	 
 je�����x��� e�����x��j � 


Since the elements� ���x�� of the symmetry
group SMf

satisfy ���� � ����� it follows that
continuity at zero implies uniform continuity�

j�� � ��� �j � j�� 	j � 	

implies

je�������x��� e�����x��j
� je�����y��� e�����y��j � 


where
y � ���x� � ���y�

Obviously if e� is continuous then e� � ���x� is
continuous� so given an arbitrary 
 there exists a
	 satisfying the condition of continuity� We are
concerned with the converse problem� Given a
	� �nd an 
 such that the condition of continu�
ity is satis�ed at 	 with the pair �	� 
�� �Given
a speci�c application� one seeks to determine
the value 
 as small as possible such that the
required condition is satis�ed��

One would expect an absolute invariant �
to satisfy the conditions for being a quasi�
invariant�

Theorem ����� If � is an absolute invariant�

then for any positive pair �	� 
�� � is a �	� 
�
quasi�invariant�



Proof� This is immediate since for an absolute
function �

�����x�� � ��x� ����x� � SMf
��

so for any 	 � 	 and any 
 � 	

j�� 	j � 	



j�����x��� �����x��j � j�����x��� ��x�j

� 	 � 


The motivation for the de�nition of a �	� 
�
quasi�invariant with respect to object recogni�
tion is the following� Given a quasi�invariant
function� e�j for each class j� and a measurement
xk� then e�j�xk� varies slowly if j � k� thereby
satisfying the �	j � 
j� conditions� If j �� k�
then e�j�xk� will not vary slowly� and therefore
the �	j � 
j� condition will not be satis�ed� The
problem of separating classes is directly related
to the variance of e�j�xk�� j �� k� This immedi�
ately implies that a time sequence of data will
generally be necessary�

Another possible method for use of quasi�
invariant functions is to develop one function� e��
for classes of the same form but di�erent param�
eters� A typical range of e� can be determined
for each class� Then for a given measurement
xj� e��xj� serves as an indexing function into
class j� Simulated or empirical data is necessary
to determine which classes are separable �by dif�
ferent values of this function�� This second for�
mulation would allow identi�cation with a sin�
gle data point� however it is unlikely that the
di�erent classes can be described by the same
quasi�invariant form with di�erent parameters�

��� An Algorithm for Determining

Quasi�invariants

No guarantee is given that useful quasi�
invariants exist �trivial ones always exist�� How�
ever� the following construction algorithm is
one method to seek out non�trivial �and hope�
fully useful� quasi�invariants� We call these
dominant�subspace invariants �DSI�s�� Since a
single method for �nding useful quasi�invariants

does not exist� any technique that produces a
quasi�invariant that satis�es the de�nition is
valid�

The tangent vectors �in�nitesimal generators�
are a vector �eld set which forms a basis for the
killing �elds� The tangent vectors figi�������m
determine the transformation groups �we will
use the convention m � n � � throughout the
remainder of the paper�� Absolute invariant
functions are found by solving the characteris�
tic equations associated with these tangent vec�
tors� A necessary and su
cient condition for a
function � to be invariant under the symmetry
group determined by the generators is

i��� � 	 i � �� � � � �m

Absolute invariants are rare� and therefore by
relaxing the requirements for absolute invari�
ance� the chance of �nding a useful classi�er is
increased�

A �	� 
� quasi�invariant function e� is a function
which satis�es

j�� 	j � 	



j�����x��� �����x��j � j�����x��� ��x�j

� 	 � 


For a small 	� the goal is to �nd as tight a bound

 as possible� thereby making e� nearly constant�
This condition is equivalent to �nding a functione� such that the derivative is small in magnitude�����de�����x��d�

����� � 	 ��

Theoretically� if this quantity is nonzero� then
by speeding up �scaling� the curve� ��� this
quantity can be made arbitrarily large� There�
fore� the necessary restriction is that the quan�
tity be empirically small� Since

de�����x��
d�

�
nX
j��

� e�
�xj

�����
���x	

d��xj �x�

d�
�

d���x�

d�
e�

���
it is equivalent to seek e� such that����d���x�d�

e����� � 	 ���



Solving the characteristic equations associated
with the tangent vectors figi�������m yields
the invariant �� Solving the characteris�
tic equations associated with some subset of
figi�������m� say without loss of generality
fhgh�������m�� yields a function e�� The subset
de�nes a subspace� and the function satis�es

h
e� � 	 h � �� � � � �m� � ���

while

m
e� �� 	 ���

Thus solving these characteristic equations
gives

df���x�
d�

e� � 	

where
df���x	
d�

�
Pm��

h�� gh h� Coupling this with

the desired property that
d���x	
d�

e� be small in
magnitude gives the equations

df���x�
d�

e� � 	

d���x�

d�
e� � 	

Subtracting the two� and using linearity of tan�
gent vectors gives�

df���x�
d�

�
d���x�

d�

� e� � 	 ���

But �
df���x�
d�

�
d���x�

d�

� e�
�

�
re���df���x�

d�
�
d���x�

d�

��
and by the Cauchy�Schwartz inequality������re���df���x�d�

�
d���x�

d�

������
�
���re���� �����df���x�d�

�
d���x�

d�

�����
re����

���x	
�

�
�e

�x�

���
���x	

� � � � � �e

�xn

���
���x	

�
is a

bounded vector since �� � �	� 	� the restriction
of re� � ���x� to �	� 	� gives a continuous image

of a compact set� hence re����
���x	

is compact�

therefore bounded�

Now� say
���re���� � K� Then to make�

df���x	
d�

�
d���x	
d�

� e� as small as possible� min�

imize �����df���x�d�
�
d���x�

d�

����� ���

The tightest bound is achieved if
���re���� is not

only bounded� but constant�

This is one method for minimizing the inner
product� Other methods may form a tighter
bound on equation ���� This new minimization
replaces the last original constraint for an abso�
lute invariant

m
e� � 	

Consider the di�erential equation characteriz�
ing the transformation group of ��

d���x�

d�
�

�
mX
i��

gii

	
����x�� ���x� � x

��	�
The curves can be expressed as functions rela�
tive to the moving basis  �we use �moving basis�
because �moving frame� generally implies an or�
thonormal basis�� By curve �tting experimental

data� the vector �elds
d���x	
d�

can be determined�
The vector �elds� � de�ne a local coordinate
system for the surface derivatives� and are de�
rived analytically by Lie group analysis� There�
fore� the scalar coe
cients g � C���m� can be
determined from the other terms� By decom�
posing the moving basis into principal compo�
nents� a subspace of the tangent space deter�
mined by the in�nitesimal generators may be
discovered� Such a subspace could be the result
of �overlooking� some physical constraint that
is not accounted for by the single equation mod�
eling the problem  the conservation of energy
equation�

Rewriting�����df���x�d�
�
d���x�

d�

�����
�

�����
�
m��X
i��

gsisi �
mX
i��

gsisi

	
����x��

�����
�
��
�gsmsm� ����x����

equation ��� indicates that sm
e� �� 	� The test

for a subspace is performed by comparing
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Figure ��� Diagram of the relation between
di�erent types of invariants�

�����d�e�xj �x�d�
�
d��xj �x�

d�

������
�����d��xj �x�d�

������
In the limiting case� gsm � 	� a �non�trivial�
true subspace invariant exists� The distinction
from an absolute invariant is in the de�nition�
An absolute invariant function is de�ned by its
vanishing inner product with a basis element i�
but a DSI is de�ned by a vanishing coe
cient�
gsm � The result� � � constant � is identical�
Note� we can not conclude that absolute invari�
ants do not exist under the case that DSI�s do
not exist� In other words� if �non�trivial� DSI�s
do not exist� then �non�trivial� absolute invari�
ants may still exist� See Figure ��� This argu�
ment may be relaxed to kgsmk � 	 for

��sm��
su
ciently small�

����� A Constructive Algorithm for

Calculating Dominant

Subspace Invariants

�� Create unitless variables by dividing each
variable in the conservation equation� f �
by its RMS value� and multiplying its cor�
responding coe
cient by the same RMS
value� This new conservation equation is
fu�

�� Analytically determine a set of vector
�elds� � which form a basis for the killing
�elds of fu�

� Compute the coe
cients of the commuta�

tor table �discussed below�� Find a new
basis� o� such that all the coe
cients are
	�

�� Find the principal components of o to de�
termine a new basis� s� for the killing �elds
such that equation ��� is minimized�

�� Solve the set of characteristic equations
corresponding to sh

e� � 	 for h �

�� � � � �m� � to �nd the general form of e��
This part of the calculation of the DSI pro�
ceeds exactly as it did in the determination
of �absolute� invariants except that the ��
nal in�nitesimal generator has not been ex�
plicitly satis�ed�

�� Further experimentation is necessary to de�
termine if the DSI is useful�

� Results

Applying this algorithm to a thermocouple data
set� we found the following dominant�subspace
invariant

e� �Sa xS � Sb xL � Sc xH � Sd xA � Se x� � xZ �
����

where the S� are constants that are dependent
upon the particular material�

In Figure ��� the dark dotted line representse� when the observed material matches the hy�
pothesized material� concrete� during a �� hours
test� The remaining lines illustrate that e�
changes its characteristic if the hypothesis does
not match the observed material� Concrete can�
not be separated from painted concrete� Con�
crete �plain and painted� clearly yields the best
DSI in terms of relative stability� separation�
and generalization�

� Summary

The techniques of Lie group analysis provide a
powerful tool for determining absolute invari�
ant functions which can serve as classi�er func�
tions for object recognition problems� Previ�
ously� we applied this analysis to the thermo�
physical model and proved that there are only
trivial absolute invariant functions�



Sa Sb Sc Sd Se
Asphalt �	�		� �	�	�� 	�		� 	���� 	�	��

Painted Asphalt �	�		� �	�	�� 	�			 	���� 	�	�

Concrete �	�		� �	�		� �	�			 	�		� 	����

Painted Concrete �	�			 �	�		� �	�			 �	�		� 	����

Clay �	�		� �	�	�� �	�			 	�	�� 	����

Gravel �	�		� �	�	�� �	�			 	�	�� 	����

Grass �	�		� �	�		 	�			 	��� 	��	

Table �� Coe
cients for the �principal� basis and dominant�subspace invariant for each material�

0 10 20 30 40 50 60 70 80
−0.065

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035

Time (hours)

Φ

Figure ��� �� hours of results for the concrete hypothesis�

We present quantitative errors for several model
approximations� We also presented a de�nition
for quasi�invariance� and an algorithm for �nd�
ing a particular type of quasi�invariant called
a dominant�subspace invariant� We found a
dominant�subspace invariant for the thermo�
physical model and illustrated the ideal result
as applied to concrete� Further details and re�
sults are available by contacting the authors�
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